Lecture 0: Course Introduction

:::info Lecturer: Cheng-Chin Chiang Department of Computer Science and Information Engineering National Dong Hwa University :::

Table of Content :::danger [toc] :::

Course Goals

- to learn how neural networks work for solving different problems
- to learn how we design neural networks for solving different problems
- to learn how we implement neural networks using a programming framework

Course Contents

- Introduction to PyTorch
- Neural Networks and Multilayer Perceptron
- Convolutional Neural Networks
- Recurrent Neural Networks
- Autoencoders
- Transfer Learning
- Deep Reinforcement Learning
- Generative Adversarial Networks
- Some Applications of Neural Networks

Referenced Materials

Books

:::danger Pro Deep Learning with PyTorch https://www.tenlong.com.tw/products/9781788624336?list_name=srh ::: :::success lan Goodfellow, Youshua Bengio and Aaron Gourville, "Deep Learning", An MIT Press book, 2016. Free online version:) http://www.deeplearningbook.org/, (including many course materials) ::: :::success 深度學習框架PyTorch : 入門與實踐 !](https://i.imgur.com/3SeWhEQ.png =210x)

https://www.tenlong.com.tw/products/9787121330773?list_name=srh :::

Online Courses

:::warning Udacity Online Course- Intro to Deep Learning with PyTorch https://www.udacity.com/course/deep-learning-pytorch--ud188 :::

Tutorials of Web Pages and Video Lectures

:::info Neural Network Programming - Deep Learning with PyTorch http://deeplizard.com/learn/video/v5cngxo4mlg ::: :::info PyTorch Documentation https://pytorch.org/docs/stable/index.html ::: ::info Machine Learning & Deep Learning Fundamentals http://deeplizard.com/learn/video/gZmobeGL0Yg ::: :::info Stanford University's Lectures of Deep Learning https://www.youtube.com/playlist?list=PL3FW7Lu3i5JvHM8JjYj=zLfQRF3E08sYv ::: :::info Reinforcement Learning - Introducing Goal Oriented Intelligence http://deeplizard.com/learn/video/nyjbcRQ-uQ8 ::: :::info Machine Learning by 台大李弘毅教授 (in Chinese) https://www.youtube.com/playlist? list=PLJV_el3uVTsPy9oCRY30oBPNLCo89yu49 ::: :::info Deep Learning Theory by 台大李弘毅教授 (in Chinese) https://www.youtube.com/playlist? list=PLJV_el3uVTsOh1F5eo9txATa4iww0Kp8K ::: :::info Dee Reinforcement Learning by 台大李弘毅教授 (in Chinese) https://www.youtube.com/playlist? list=PLJV_el3uVTsODxQFgzMzPLa16h6B8kWM ::: :::info Generative Adversarial Networks by 台大李弘毅教授 (in Chinese) https://www.youtube.com/playlist? list=PLJV_el3uVTsOMq6JEFPW35BCiOQTsoqwNw :::

Grade Evaluation

- Three Programming Assignments (60%):
 - Shallow Neural Networks: Multi Layer Perceptrons (20%)
 - Deep Neural Networks: Convolutional Neural Networks (20%)
 - Recurrent Neural Networks: LSTM (20%)
- One Open-book Midterm Exam (30%)
- Class Attendance and Interactions (10%)

Required Backgrounds

- Math
 - Calculus
 - Linear Algebra
 - Probability and Statistics
- Programming
 - Python
 - For your reference (Professor CCC's Video Lectures in Chinese): http://web.csie.ndhu.edu.tw/ccchiang/Data/VLectures/CCC_Python.htm
 - Python Tutorial for Beginners (Telusko's Video Lectures in English) https://www.youtube.com/playlist?list=PLsyeobzWxl7poL9JTVyndKe62ieoN-MZ3
 PyTorch Programming:
 - 周莫煩: https://www.youtube.com/playlist?list=PLXO45tsB95cJxT0mL0P3-G0rBcLSvVkKH (in Chinese)
 - PyTorch ZeroToAll Tutorial: https://www.youtube.com/playlist?list=PLIMkM4tgfjnJ3I-dbh09JTw7gNty6o_2m (in English)

AI, Machine Learning (ML) and Deep Learning (DL)

- Al refers generally to the intelligence acquired by machines/computers to mimic the humans abilities for doing various tasks.
 - In the era of early AI, people believed that AI can be achieved by computer programs with hard coded rules (Symbolic AI).
 - But it has been proved that this approach was almost incapable of solving complex problems such as image recognition, object detection, object segmentation, language translation, and natural-language-understanding tasks.
 - Machine learning (ML) is a sub-field of AI and has become popular in the last 10 years.
 - Unlike the symbolic AI, ML systems look at tons of data and come up with rules to predict outcomes for unseen data.

- When dealing with unstructured data that reveal no direct explicit features, ML systems suffer from the problem of extracting effective features from the data (feature engineering). !](https://i.imgur.com/59nEwMI.png = 550x)
- Recently, DL emerges as a more popular approach to achieve AI for its ability to learn the extraction of features automatically.

History of DL:

Techniques	Year
Neural networks	1943
Backpropogation	Early 1960s
Convolution Neural Networks	1979
Recurrent neural networks	1980
Long Short-Term Memory	1997

Relationship among Al, ML, and DL

 AI comes first (the largest), then machine learning (which blossomed later), and finally DL which is driving today's AI explosion ![] (https://i.imgur.com/paCqYtK.png =500x)

• Why does the DL prevail now?

• Hardware availability

Performance benchmark of neural architectures on CPUs and GPUs (Image source: http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture8.pdf)

- Data and models
 - Data
 - MNIST
 - COCO datasetCIFAR
 - The Street View House Numbers
 PASCAL VOC

 - Wikipedia dump 20 Newsgroups
 - Penn Treebank
 - Kaggle
 - Models
 - ImageNet
 - VGG
 - ResNet
 - Inception
 - DenseNet
 - RNN
 - LSTM
 - AutoEncoders
 - Generative Adversarial Networks (GAN)
 - Reinforcement Learning (RL)
 - •

Deep learning frameworks

- TensorFlow
- Caffe2
- Keras
- Theano
- PyTorch
- Chainer
- DyNet
- MXNet
- CNTK